首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1115篇
  免费   135篇
  国内免费   1篇
  2021年   12篇
  2020年   11篇
  2019年   14篇
  2018年   18篇
  2017年   10篇
  2016年   14篇
  2015年   52篇
  2014年   45篇
  2013年   52篇
  2012年   67篇
  2011年   60篇
  2010年   34篇
  2009年   34篇
  2008年   53篇
  2007年   50篇
  2006年   58篇
  2005年   54篇
  2004年   55篇
  2003年   43篇
  2002年   40篇
  2001年   35篇
  2000年   48篇
  1999年   29篇
  1998年   19篇
  1997年   11篇
  1996年   17篇
  1995年   19篇
  1994年   12篇
  1993年   9篇
  1992年   31篇
  1991年   16篇
  1990年   27篇
  1989年   9篇
  1988年   20篇
  1987年   18篇
  1986年   24篇
  1985年   9篇
  1984年   13篇
  1983年   9篇
  1982年   9篇
  1981年   5篇
  1980年   6篇
  1979年   10篇
  1978年   11篇
  1977年   9篇
  1975年   4篇
  1974年   8篇
  1973年   6篇
  1972年   4篇
  1969年   4篇
排序方式: 共有1251条查询结果,搜索用时 187 毫秒
21.
The levels of amino acids in globus pallidus, a structure heavily innervated with gamma-aminobutyric acid (GABA)-ergic terminals but few glutamergic terminals, were compared with the levels in neostriatum, a structure richly innervated with glutamergic terminals but intermediate in GABAergic terminals. The level of glutamate in neostriatum was twice as high as in globus pallidus whereas the level of GABA in globus pallidus was three times higher than in neostriatum. The level of aspartate was similar in both regions whereas the level of glutamine was correlated with the level of glutamate. Methionine sulfoximine, a glutamine synthetase inhibitor, reduced the level of glutamine to 10-20% of control in both structures. This reduction was accompanied by the largest decrease in the level of glutamate in neostriatum, indicating that transmitter glutamate turns over more rapidly than other glutamate pools. Likewise, insulin decreased the levels of glutamate and glutamine more in neostriatum than in globus pallidus. gamma-Vinyl GABA increased the level of GABA in globus pallidus more than in neostriatum although the percent increase was largest in neostriatum. Treatment with gamma-vinyl GABA was accompanied by a large reduction in the level of GABA, indicating that a substantial proportion of the glutamine pool is linked to GABA metabolism.  相似文献   
22.
The experimental objective was to evaluate how a spontaneously formed corpus luteum (CL) differed in its response to prostaglandin (PG) F-2 alpha, given during the first 5 days after ovulation, from a CL induced during dioestrus with hCG. Sixteen Holstein heifers were used during each of 2 consecutive oestrous cycles. During the first cycle (sham cycle), heifers were given no PGF-2 alpha (control) or PGF-2 alpha (25 mg, i.m.) on Day 2, 4 or 6 (oestrus = Day 0). During the second cycle (hCG-treated cycle), heifers were given hCG (5000 i.u., i.m.) on Day 10, followed by no PGF-2 alpha (control) or PGF-2 alpha on Day 12, 14 or 16, corresponding to 2, 4 or 6 days after the ovulatory dose of hCG. A new ovulation was induced in 13 of 16 heifers given hCG on Day 10. Luteolysis did not occur immediately in heifers given PGF-2 alpha on Day 2 or 4 during the sham cycle, but concentration of progesterone in serum during the remainder of the cycle was lower in heifers given PGF-2 alpha on Day 4 than in sham controls or heifers given PGF-2 alpha on Day 2 (P less than 0.05). Luteolysis occurred immediately in heifers given PGF-2 alpha on Day 6 of the sham cycle or on Day 12, 14 or 16 of the hCG-treated cycle, with concentration of progesterone in serum decreasing to less than 1 ng/ml within 2 days.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
23.
Cell surface expression of the human cytomegalovirus (HCMV) major envelope glycoprotein complex, gp55-116 (gB), was studied by using monoclonal antibodies and an HCMV gp55-116 (gB) recombinant vaccinia virus. HCMV-infected human fibroblasts and recombinant vaccinia virus-infected HeLa cells expresses three electrophoretically distinct proteins of Mr 170,000, 116,000, and 55,000 on their surface. These species have been previously identified within infected cells and purified virions. Two unique neutralizing epitopes were shown to be present on the cell surface gp55-116 (gB). Utilizing HeLa cells infected with the gp55-116 recombinant vaccinia virus as a specific immunosorbent, we have shown that approximately 40 to 70% of the total serum virus-neutralizing activity of a group of individuals with past HCMV infections was directed against this single envelope glycoprotein. The implications of this finding for vaccine development are discussed.  相似文献   
24.
The processing pathway of the major envelope glycoprotein complex, gp55-116 (gB), of human cytomegalovirus was studied using inhibitors of glycosylation and endoglycosidases. The results of these studies indicated that the mature gp55-116 is synthesized by the addition of both simple and complex N-linked sugars to a nonglycosylated precursor of estimated Mr 105,000. In a rapid processing step, the Mr 105,000 precursor is glycosylated to a protein of Mr 150,000 (gp150) which contains only endoglycosidase H-sensitive sugar linkages. The gp150 is then processed relatively slowly to a Mr 165,000 to 170,000 species (gp165-170), which is then cleaved to yield the mature gp55-116. Monensin prevented the final processing steps of the gp150, including cleavage, suggesting that transport through the Golgi apparatus is required for complete processing. Digestion of the intracellular forms of this complex as well as the virion forms confirmed the above findings and indicated that the mature virion form of gp55 contains 8,000 daltons of N-linked sugars. The virion gp116 contains some 52,000 to 57,000 daltons of N-linked carbohydrates and approximately 5,000 daltons of O-linked sugars.  相似文献   
25.
Proton-dependent multidrug efflux systems.   总被引:26,自引:0,他引:26       下载免费PDF全文
Multidrug efflux systems display the ability to transport a variety of structurally unrelated drugs from a cell and consequently are capable of conferring resistance to a diverse range of chemotherapeutic agents. This review examines multidrug efflux systems which use the proton motive force to drive drug transport. These proteins are likely to operate as multidrug/proton antiporters and have been identified in both prokaryotes and eukaryotes. Such proton-dependent multidrug efflux proteins belong to three distinct families or superfamilies of transport proteins: the major facilitator superfamily (MFS), the small multidrug resistance (SMR) family, and the resistance/ nodulation/cell division (RND) family. The MFS consists of symporters, antiporters, and uniporters with either 12 or 14 transmembrane-spanning segments (TMS), and we show that within the MFS, three separate families include various multidrug/proton antiport proteins. The SMR family consists of proteins with four TMS, and the multidrug efflux proteins within this family are the smallest known secondary transporters. The RND family consists of 12-TMS transport proteins and includes a number of multidrug efflux proteins with particularly broad substrate specificity. In gram-negative bacteria, some multidrug efflux systems require two auxiliary constituents, which might enable drug transport to occur across both membranes of the cell envelope. These auxiliary constituents belong to the membrane fusion protein and the outer membrane factor families, respectively. This review examines in detail each of the characterized proton-linked multidrug efflux systems. The molecular basis of the broad substrate specificity of these transporters is discussed. The surprisingly wide distribution of multidrug efflux systems and their multiplicity in single organisms, with Escherichia coli, for instance, possessing at least nine proton-dependent multidrug efflux systems with overlapping specificities, is examined. We also discuss whether the normal physiological role of the multidrug efflux systems is to protect the cell from toxic compounds or whether they fulfil primary functions unrelated to drug resistance and only efflux multiple drugs fortuitously or opportunistically.  相似文献   
26.
A Huber  P Sander  A Gobert  M Bhner  R Hermann    R Paulsen 《The EMBO journal》1996,15(24):7036-7045
The transient receptor potential protein (Trp) is a putative capacitative Ca2+ entry channel present in fly photoreceptors, which use the inositol 1,4,5-trisphosphate (InsP3) signaling pathway for phototransduction. By immunoprecipitation studies, we find that Trp is associated into a multiprotein complex with the norpA-encoded phospholipase C, an eye-specific protein kinase C (InaC) and with the InaD protein (InaD). InaD is a putative substrate of InaC and contains two PDZ repeats, putative protein-protein interaction domains. These proteins are present in the photoreceptor membrane at about equimolar ratios. The Trp homolog analyzed here is isolated together with NorpA, InaC and InaD from blowfly (Calliphora) photoreceptors. Compared to Drosophila Trp, the Calliphora Trp homolog displays 77% amino acid identity. The highest sequence conservation is found in the region that contains the putative transmembrane domains S1-S6 (91% amino acid identity). As investigated by immunogold labeling with specific antibodies directed against Trp and InaD, the Trp signaling complex is located in the microvillar membranes of the photoreceptor cells. The spatial distribution of the signaling complex argues against a direct conformational coupling of Trp to an InsP3 receptor supposed to be present in the membrane of internal photoreceptor Ca2+ stores. It is suggested that the organization of signal transducing proteins into a multiprotein complex provides the structural basis for an efficient and fast activation and regulation of Ca2+ entry through the Trp channel.  相似文献   
27.
A mixed culture that could utilize cocaine as the sole source of carbon and energy for growth was isolated by selective enrichment. The individual microorganisms within this mixed culture were identified as Pseudomonas fluorescens (termed MBER) and Comamonas acidovorans (termed MBLF). Each microorganism was shown to be unable to grow to any appreciable extent on 10 mM cocaine in the absence of the other. C. acidovorans MBLF was found to possess an inducible cocaine esterase which catalyzed the hydrolysis of cocaine to ecgonine methyl ester and benzoate. C. acidovorans was capable of growth on benzoate at concentrations below 5 mM but was unable to metabolize ecgonine methyl ester. P. fluorescens MBER was capable of growth on either benzoate as the sole source of carbon or ecgonine methyl ester as the sole source of carbon and nitrogen. P. fluorescens MBER was found to initiate the degradation of ecgonine methyl ester via ecgonine, pseudoecgonine, and pseudoecgonyl-coenzyme A. Subcellular studies resulted in the identification of an ecgonine methyl esterase, an ecgonine epimerase, and a pseudoecgonyl-coenzyme A synthetase which were induced by growth on ecgonine methyl ester or ecgonine. Further metabolism of the ecgonine moiety is postulated to involve nitrogen debridging, with the production of carbonyl-containing intermediates.  相似文献   
28.
S Hobe  S Prytulla  W Kühlbrandt    H Paulsen 《The EMBO journal》1994,13(15):3423-3429
The major light-harvesting complex (LHCII) of photosystem II, the most abundant chlorophyll-containing complex in higher plants, is organized in trimers. In this paper we show that the trimerization of LHCII occurs spontaneously and is dependent on the presence of lipids. LHCII monomers were reconstituted from the purified apoprotein (LHCP), overexpressed in Escherichia coli, and pigments, purified from chloroplast membranes. These synthetic LHCII monomers trimerize in vitro in the presence of a lipid fraction isolated from pea thylakoids. The reconstituted LHCII trimers are very similar to native LHCII trimers in that they are stable in the presence of mild detergents and can be isolated by partially denaturing gel electrophoresis or by centrifugation in sucrose density gradients. Moreover, both native and reconstituted LHCII trimers exhibit signals in circular dichroism in the visible range that are not seen in native or reconstituted LHCII monomers, indicating that trimer formation either establishes additional pigment-pigment interactions or alters pre-existing interactions. Reconstituted LHCII trimers readily form two-dimensional crystals that appear to be identical to crystals of the native complex.  相似文献   
29.
UDP-GlcNAc: Man1-6R (1-2)-N-acetylglucosaminyltransferase II (GlcNAc-T II; EC 2.4.1.143) is a key enzyme in the synthesis of complexN-glycans. We have tested a series of synthetic analogues of the substrate Man1-6(GlcNAc1-2Man1-3)Man-O-octyl as substrates and inhibitors for rat liver GlcNAc-T II. The enzyme attachesN-acetylglucosamine in 1-2 linkage to the 2-OH of the Man1-6 residue. The 2-deoxy analogue is a competitive inhibitor (K i=0.13mm). The 2-O-methyl compound does not bind to the enzyme presumably due to steric hindrance. The 3-, 4- and 6-OH groups are not essential for binding or catalysis since the 3-, 4- and 6-deoxy and -O-methyl derivatives are all good substrates. Increasing the size of the substituent at the 3-position to pentyl and substituted pentyl groups causes competitive inhibition (K i=1.0–2.5mm). We have taken advantage of this effect to synthesize two potentially irreversible GlcNAc-T II inhibitors containing a photolabile 3-O-(4,4-azo)pentyl group and a 3-O-(5-iodoacetamido)pentyl group respectively. The data indicate that none of the hydroxyls of the Man1-6 residue are essential for binding although the 2- and 3-OH face the catalytic site of the enzyme. The 4-OH group of the Man-O-octyl residue is not essential for binding or catalysis since the 4-deoxy derivative is a good substrate; the 4-O-methyl derivative does not bind. This contrasts with GlcNAc-T I which cannot bind to the 4-deoxy-Man- substrate analogue. The data are compatible with our previous observations that a bisectingN-acetylglucosamine at the 4-OH position prevents both GlcNAc-T I and GlcNAc-T II catalysis. However, in the case of GlcNAc-T II, the bisectingN-acetylglucosamine prevents binding due to steric hindrance rather than to removal of an essential OH group. The 3-OH of the Man1-3 is an essential group for GlcNAc-T II since the 3-deoxy derivative does not bind to the enzyme. The trisaccharide GlcNAc1-2Man1-3Man-O-octyl is a good inhibitor (K i=0.9mm). The above data together with previous studies indicate that binding of the GlcNAc1-2Man1-3Man- arm of the branched substrate to the enzyme is essential for catalysis. Abbreviations: GlcNAc-T I, UDP-GlcNAc:Man1-3R (1-2)-N-acetylglucosaminyltransferase I (EC 2.4.1.101); GlcNAc-T II, UDP-GlcNAc:Man1-6R (1-2)-N-acetylglucosaminyltransferase II (EC 2.4.1.143); MES, 2-(N-morpholino)ethane sulfonic acid monohydrate.  相似文献   
30.
Morphogenesis of the clearnose skate, Raja eglanteria, was not significantly inhibited as a result of 7 days of exposure to 1-2 mM selenate in the sea water during Days 59-69 of embryonic development (hatching would normally have occurred at 82 +/- 4 days of incubation). Although corneal transparency appeared normal in the eye, preliminary measurements of the thickness of Bowman's layer of the cornea suggested that it was significantly thinner in the corneas of embryos exposed to 1-2 mM selenate. Selenate is an ion reported to inhibit sulfation of glycosaminoglycans in connective tissue.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号